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Abstract. The average probability density P(r , r )  of random walks on fractals is revisited 
within the continuous-time random walks formalism. Corrections to the accepted asymptotic 
stretched Gaussian decay of P(r.  r )  of the form I“ are discussed. It is shown that P(, I )  obeys 
a diffusion equation with a fractional time derivative asymptotically, and predictions about the 
value of a atz presented. 

Transport phenomena on fractals display a variety of anomalous behaviours with respect to 
the standard counterparts valid on uniform systems (for recent reviews see, e.g., 111). One 
of the questions of current interest regards the form of the probability density P(r,  t) of a 
random walker, at distance r at time f from its starting point at t = 0, on such self-similar 
substrates (see also [2]). 

Extensive numerical simulations on random fractals, supported by scaling arguments 
[2], suggest that, on average, 

(1) 

when t + CO and r >> R. Here, RZ = ((?-(I) - r(0))’) is the mean-square displacement 
of the random walker, R - ttId*. The spectral dimension ds = 2df/d,, where df is the 
fractal dimension, and the exponent U = d,/(d, - 1). When d, > 2, U < 2 and P(r,  t) 
is called a stretched Gaussian [2]. We note that (1) is consistent with the normalization 
lTdrrd‘ - ’P( r , t )  = 1. 

A functional form similar to (1) is also obtained on deterministic fractals, such as 
Sierpinski gaskets [3]. Although the stretched Gaussian form in (1) is generally accepted, 
little attention has been drawn so far to !he existence of a non-exponential prefactor in the 
asymptotic form of P(r ,  I), i.e. 

1 P ( r ,  t )  - exp[-const (r/R)”] 

p(r+ t) - + (r/R)a exp[-const (r/R)’]. (2) 

In this paper we present some analytical results which indicate that (2) is a suitable 
generalization of (1) and give predictions about the value of the unknown exponent U. Our 
results are different to those discussed in [3], and are similar but complementary to those 
of [4]. The latter were based on a fractional diffusion equation (FDE) suggested recently for 
describing anomalous diffusion on fractals [5 ] .  The aim of the present work is to motivate 
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such FDE by revisiting the known continuous-time random walk (CTRW) formalism [6] .  This 
formalism has also been applied to systems that mimic self-similar geomehy (see e.g. [7]). 

Let us start with a brief review of the CTRW formalism. We consider a random walker 
in a continuum ddimensional space. Let P(T) be the probability that a single-step of the 
walker falls in the interval ( r t d r )  in any given step. Let @ ( t )  be the probability density for 
the time between two successive steps (waiting time distribution). In the CTRW formalism, 
the Fourier transform of P(T) 

H E  Roman and P A A l e m y  

p ( k )  = 1 ddr exp(-k. r ) p ( r )  (3) 

are required for calculating the Laplace transform of P(r ,  t ) .  which can  be written as 161 

To proceed further, we assume that @(#) = y ( f O / f ) Y / t ,  when f > to, and @(I )  = 0 
otherwise. Here, to represents the shortest elapsed time between two successive steps, and 
is taken as to >. 0 for normalization. The choice y = 2/dw < 1, mimics the anomalous 
behaviour R - t ' ldW mentioned above. 

Since we are interested in the asymptotic form of P ( ,  t ) .  we need to study the s + 0 
behaviour of P(r,s) .  In this limit, it is easy to show that @(s) Z 1 - bsY, where 
b = y r ( 1  - y)t,'. Similarly, since we are interested in the asymptotic case r -+ W. 
the main contribution to the integral in (5) will come from values k + 0. For an isotropic 
walk with finite variance U ,  p ( k )  E 1 - oZk*/2, when k + 0, and equation (5) can be 
written as 

(6) 
1 

p(r ,  s) = 7 Qd(s)zd(a) B 
when r + 03 and s + 0, where B = o/m, = s - ( ' - ~ / ~ * ) ,  a = rs'ld./B and 

Equation (7) can be solved easily in spherical coordinates. yielding Id(a) = 
$ ( 2 ~ / a ) ~ e x p ( - a ) ,  with K = (d - 1)/2, which is exact when d = 1 and d = 3, and 
only asymptotically exact when d = 2. Thus, equation (6) becomes 

(8) 
where A ( p , d )  = + ( 2 ~ ) - " b - ~ .  The probability density may be normalized such that 
J," dr rd-'P(r, t )  = 1, according to the assumption that the random walk takes place in a 
continuum d-dimensional space. Our asymptotic result (8) is consistent with this condition, 
as can be easily checked, but not with the normalization of P(r. t )  in (1). This discrepancy 
has further consequences, as we immediately see. 

Let us discuss the asymptotic behaviour of P(r ,  t )  implied by (8). Following [4], one 
can show that (8) yields a power-law correction factor with an exponent 01 given by 

1 

PO. s) = A V ,  d)Qd(s)a-" exp(-a) 

c d = u ( $ ( d i - l ) - ~ )  (9) 
with d; = 2d/dw. The fact that the spatial dimension d appears in (9) is a direct consequence 
of the normalization of P(r ,  t) .  On fractals, we would expect, instead, that df  would play the 
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role of d. Thus, our approach leading to (8) and (9) needs to be generalized by incorporating 
the fractal dimension df explicitly in the formalism. To do this, it is instructive to analyse 
our result (8) from a different point of view, i.e. by working out the differential equation 
that P(r,  f )  satisfies. 

Such an equation is obtained simply by calculating the partial derivative of P ( r ,  s )  with 
respect to r .  The result is a P / a r  = - s frdwP/p  - - K P / r ,  which, using the known properties 
of the Laplace transform for fractional derivatives [8], can be written as 

Equation (IO) describes the behavior of P(r ,  t )  asymptotically. This equation corresponds 
to the standard diffusion equation when d, = 2 [SI. A similar equation has been proposed 
in [4,5], and derived more recently in [9]. 

The analogy between the CTRW and the fractional diffusion equation (FDE) approach 
is clearly manifested by our result (IO). This analogy is actually not surprising, since in 
the FDE approach the 'anomalies' of the random walk are also governed by the 'temporal' 
variable in the formalism (see [5]). The parameter K was introduced in 141 to reproduce the 
known FDE valid for standard Brownian motion in d-dimensions. On fractals, the value 

dr - 1 
2 

K = -  

was suggested on an empirical basis [4]. In what follows, we attempt to motivate the 
plausibility of the choice (1 l ) ,  by generalizing (6) and (7) to the case in which the fractal 
geometry of the medium is explicitly taken into account. 

We assume now that the random walk takes place in a subspace of non-integer dimension 
df, embedded in a d-dimensional continuum space. Accordingly, we argue that the 
integrations in spherical coordinates in q-space (7) should be performed using the form 
dqqdf-' in place of dqqd-'. while for the relevant angular part the form dB(sinB)df-2 
should be employedt. According to this, equations (6) and (7) become 

where 

t The plausibility of OUT choice can be appreciated on a non-rigorous basis as follows. We note fin1 that the 
integrand dqqdf-' implies fhat the suppori of the integral is a fractal. In this case, the Fourier hansform of. say, 
a m ~ m t  function on the fractal in r-space can be written as 

which scales as q-d'. Its inverse Fourier transform may then be defined as 

~ m d q g S q - d ~ ~ d B f ( 8 ) e x p ( - i q r c o s B )  

where we see that the rad1 is independent of r ,  provided that 0 = 4 - I .  The form of the integrand for the 
angular part, f(8) = (sin8)dr-', is the simplest possible one consistent with ow assumption that the suppon is 
a homogeneous fractal. i.e. the angular variation of the mass is also determined by dr. and with the requirement 
hat it reduces to the known Euclidean results f (8) = sin0 when df = 3, and f = I when dr = 2. 



3410 

and Bdr can be determined from the normalization condition (for integral values of df, 
BS = 2x and Bz = 2). Here, & ( S )  is equal to Qds)  with d replaced by df. Equation 
(13) can still be solved exactly, yielding 
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where v = df/2 - 1 and K ,  is a modified Bessel function (see, e.g.. [IO]). Using the 
asymptotic behaviour &(a) for large a in (14). K, - m u - 1 / 2 e x p ( - a ) ,  equation (12) 
can be written similarly to (8) as 

(15) 
where fd, = (2~r)-~'B,j,r(~)/(2n") and K = (df- l)/2 as in (1 1). We note that now P(r ,  s) 
is consistent with the normalization condition Jrdrrdr- lP(r ,  t)  = I ,  i.e. with equation 
( I ) ,  without further modifications. The FDE corresponding to (15) is again of the form (IO) 
with K given by (1  1). 

We can now come back to our discussion about the exponent (Y. The value (9) is now 
replaced by (see, e.g., (41) 

( Y = U ( $ ( d , -  l ) - K )  (16) 
with ds instead of d: and K = (dr - 1)/2, in agreement with the postulated value in [4]. 
We note that the value of (Y suggested in [3] corresponds to K = 0, and was obtained by 
inverting the Laplace transform P(r ,  s) proposed earlier in [ 1 I]. 

In conclusion, our derivation suggests that although power-law correction term in the 
asymptotic form of P(r,  t )  (cf (2)) are common to different formalisms studied, the value 
of the exponent (Y describing them depends sensitively on the approach used. We hope that 
the present work will stimulate further numerical work to test the prediction (16). 
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