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Continuous-time random walks and the fractional diffusion
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Abstract. The average probability density P{r,:) of random walks on fractals is revisited
within the continuous-time random walks formalism. Comections to the accepted asymptotic
stretched Gaussian decay of P{(r, ) of the form r® are discussed. It is shown that P{r, ) obeys
a diffusion equation with a fractional time derivative asymptotically, and predictions about the
value of o are presented,

Transport phenomena on fractals display a variety of anomalous behaviours with respect to
the standard counterparts valid on uniform systems (for recent reviews see, e.g., {11). One
of the questions of current interest regards the form of the probability density P(r,¢) of a
random walker, at distance r at time ¢ from its starting point at ¢ = 0, on such self-similar
substrates (see also [2]).

Extensive numerical simulations on random fractals, supported by scaling arguments
[2], suggest that, on average,

1
Pr,t) ~ e expf—const {r/R)*] 1)

when 1 — co and r > R. Here, R? = ((r(t) — r(0))?) is the mean-square displacement
of the random walker, R ~ t'/%, The spectral dimension d; = 2d;/d,, where d; is the
fractal dimension, and the exponent & = d,,/(d, — 1). When d, > 2, u < 2 and P(r, 1)
is called a stretched Gaussian [2]. We note that (1) is consistent with the normalization
fldrrd 1P = 1.

A functional form similar to (1) is also obtained on deterministic fractals, such as
Sierpinski gaskets [3]. Although the stretched Gaussian form in (1) is generally accepted,
little attention has been drawn so far (o the existence of a non-exponential prefactor in the
asymptotic form of P(r, 1), i.e.

1

P(r.t) “’m

(r/R)" exp[—const (r/ R)"]. 2

In this paper we present some analytical results which indicate that (2) is a suitable
generalization of (1) and give predictions about the value of the unknown exponent oz, Our
results are different to those discussed in [3], and are similar but complementary to those
of [4]. The latter were based on a fractional diffusion equation (FDE) suggested recently for
describing anomalous diffusion on fractals [5]. The aim of the present work is to motivate
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such FDE by revisiting the known continuous-time random walk (CTRW) formalism {6]. This
formalism has also been applied to systems that mimic self-similar geometry (see e.g. [71).

Let us start with a brief review of the CTRW formalism. We consider a random walker
in a continuum d-dimensional space. Let p(r) be the probability that a single-step of the
walker fallg in the interval (r<+dr) in any given step. Let ¢(¢} be the probability density for
the time between two successive steps (waiting time distribution). In the CTRW formalism,
the Fourier transform of p(r)

ptk) = [ exp(-k-m)ptr) )
and the Laplace transform of ¥ (¢)
Yis) = f dt exp(—s)(2) 4
]

are required for calculating the Laplace transform of P(r, t), which can be written as [6]

1-¢()y 1 fddk exp(—ik - r) ‘ )

s (2m)¢ 1 — p(k)g(s)

To proceed further, we assume that ¥ (¢} = y(t/2)* /¢, when t = #, and () = 0
otherwise. Here, fy represents the shortest elapsed time between two successive steps, and
is taken as £, > O for normalization. The choice ¥ = 2/d. < 1, mimics the anomalous
behaviour R ~ t'/4 mentioned above.

Since we are interested in the asymptotic form of P(r, £}, we need to study the s — 0
behaviour of P(r,s). In this limit, it is easy to show that ¥(s) = 1 — bs¥, where
b = yI'(1 — y)tf. Similarly, since we are interested in the asymptotic case r — 00,
the main contribution to the integral in (5) will come from values & — (. For an isotropic
walk with finite variance o, p(k) = 1 ~ ¢2?/2, when &k — 0, and equation (5) can be
written as

Pir,s) =

1
P(r,5) = 5 Qals)la(a) (6)

when r — 0o and 5§ = 0, where 8 = 6/+/2b, Qu(s) = s~1=9/d} g = psl/de /8 and
fdd exp(—ig - #a)
(2m)e 1+4%
Equation (7) can be solved easily in spherical coordinates, yielding Ij(@) =
%(27‘!/&)" exp(—a), with &k = (d — 1)/2, which is exact when d = 1 and 4 = 3, and
only asymptotically exact when d = 2. Thus, equation (6) becomes
P(r,s) = A(B,d)Qu(s)a™ exp(—a) (8)

where A(B,d} = %(Zn)‘"ﬁ"’ . The probability density may be normalized such that
f&” dr r¢=' P(r, 1) = 1, according to the assumption that the random walk takes place in a
continuum d-dimensional space. Qur asymptotic result (8) is consistent with this condition,
as can be easily checked, but not with the normalization of P(r, #) in (1). This discrepancy
has further consequences, as we immediately see.

Let us discuss the asymptotic behaviour of P(r,t) implied by (8). Following [4], one
can show that (8) yields a power-law correction factor with an exponent ¢ given by

o=u(3(d; - 1) —«) )

with df = 2d/d.,. The fact that the spatial dimension d appears in (9) is a direct consequence
of the normalization of P{r, ¢). On fractals, we would expect, instead, that dy would play the

Iia) =

N
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role of d. Thus, our approach leading to (8) and (9) needs to be generalized by incorporating
the fractal dimension ds explicitly in the formalism. To do this, it is instructive to analyse
our result (8) from a different point of view, i.e. by working out the differential equation
that P(r, ¢) satisfies,

Such an equation is obtained simply by calculating the partial derivative of P(r, 5) with
respect to r. The result is 8 P/dr = —s'/* P /8 —« P/r, which, using the known properties
of the Laplace transform for fractional derivatives [8], can be written as

dpP(r. 1) P
_—_atildw =-5 (E-I-;P) (10)

Equation (10) describes the behavior of P{r,¢) asymptotically. This equation corresponds
to the standard diffusion equation when 4y = 2 [8]. A similar equation has been proposed
in [4, 5], and derived more recently in [9].

The analogy between the CTRW and the fractional diffusion equation (FDE) approach
is clearly manifested by our result (10). This analogy is actually not surprising, since in
the FDE approach the ‘anomalies’ of the random walk are also governed by the ‘temporal’
variable in the formalism (see [5]). The parameter & was introduced in [4] to reproduce the
known FDE valid for standard Brownian motion in d-dimensions, On fractals, the value

di— 1
K =
2

was suggested on an empirical basis [4]. In what follows, we attempt to motivate the
plausibility of the choice (11), by generalizing (6) and (7) to the case in which the fractal
geometry of the medium is explicitly taken into account.

We assume now that the random walk takes place in a subspace of non-integer dimension
d;, embedded in a d-dimensional continuum space. Accordingly, we argue that the
integrations in spherical coordinates in g-space (7) should be performed using the form
dg g% in place of dgg?!, while for the relevant angular part the form dg(sin@)%2
should be employedi. According to this, equations (6) and (7) become

(11)

1
P(r,s) = E&'{'ng(s)[d;(a) (12)
where
Bd o0 qdf—l. n . - .
Li(a) = (er)r p j; dqmE fo dd(sin8)“ 2 exp(—iga cos ) (13)

t The plausibility of our choice can be appreciated on a non-rigorous basis as follows. We note first that the
integrand dg g%—! implies that the support of the integral is a fractal. In this case, the Fourier transform of, say,
a constant function on the fractal in r-space can be written as

o =
f dr rér-lconst f dof(8) exp(igr cos 8)
0 0
which scales as g~%. Its inverse Fourjer transform may then be defined as
00 T
f dg gfq~ f def (8) exp(—igr cos )
0 [

where we see that the result is independent of r, provided that 8 = df — 1. The form of the integrand for the
angular part, f(8) = (sin®)%~2, is the simplest possible one consistent with our assumption that the support is
a homogeneous fractal, i.e. the angular variation of the mass is also determined by dr, and with the requirement
that it reduces to the known Euclidean results f(8) = siné whendf =3, and f = 1 when df =2,
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and By can be determined from the normalization condition (for integral values of dr,
Bs = 27 and B; == 2). Here, Q(s) is equal to Qu(s) with d replaced by d;. Equation
(13) can still be soived exactly, vielding

By
Iz (@) = (Zﬁ)dr?-"«/_l“(v-l- $a~"Ky(a) (14)

where v = d¢/2 — 1 and K, is a modified Bessel function (see, e.g., [10]). Using the
asymptotic behaviour K, (a) for large a in (14), X, ~ 7 2a=1? exp(~a), equation (12)
can be written similarly to (8) as

P(r,5) = faA(B, di) Qu(s)a™ exp(—a) (13)

where fg, = (2n)“dedr1"(.'c)/(2n“) and ¥ = (dp—l)/Z as in (11). We note that now P(r, 5)
is consistent with the normalization condition f;° dr ré~'P(r,1) = 1, ie. with equation
(1), without further modifications. The FDE corresponding to (15) is again of the form (10)
with « given by (11).

We can now come back to our discussion about the exponent &. The value (9) is now
replaced by (see, e.g., [4])

a=u(id—1)—«) (16)

with d; instead of 4] and ¥ = (d¢ — 1}/2, in agresment with the postulated value in {4].
We note that the value of @ suggested in [3] corresponds to ¥ = 0, and was obtained by
inverting the Lapiace transform P(r, s) proposed earlier in [11].

In conclusion, our derivation suggests that although power-law correction terms in the
asymptotic form of P(r, 1) (cf (2)) are common to different formalisms studied, the value
of the exponent & describing them depends sensitively on the approach used. We hope that
the present work will stimulate further numerical work to test the prediction (16).
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